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J. Phys.: Condens. Matter 9 (1991) 3065-3079. Printed in the UK 

Semiclassical interatomic potential for carbon and its 
application to the self-interstitial in graphite 

Malcolm I Heggiet 
Department of Physics, Stocker Road, University of Exets, Exets EX4 4QL, UK 

Received 19 December 1990 

Abstract. A semiclassical interatomic potential for carbon is discussed which is 
based on the proximity cell (the WignerSeitz cell) around each atom. It introduces 
three internal degrees of freedom per atom, rrepnescnting the magnitude and diredion 
of the p orbital that is not involved in sp hybridization. Its direct interpolation 
betwem spz and sp3 configuraticme combined with g d  elastic properties allows its 
use on probkmatic defects, such as the interplanar interstitial in paphite, which is 
given as an example. 

1. Introduction 

Carbon in its many forms has a wealth of technological applications, from carbon fibres 
to diamond-like films, from graphite moderators to chemical filters and catalysts. Its 
two most important, and almost energebically degenerate, allotropes are graphite and 
diamond, which exhibit wildly disparate properties, mechanical ones in particular. In 
order to model these properties and how they combine in non-crystalline solids of 
intermediate structure we propose a semiclassical potential which has two aims. First, 
to include the essential quantum mechanical behaviour of electrons in atoms and 
bonds, already understood as ‘chemical intuition’, and, second, to  maximize the input 
from existing experimental and theoretical energetics data. In a sense the potential is 
a crude expert system, with chemical rules forming the framework used to elicit and 
reproduce numerical detail from experimental and ab in i f io  information. 

One important consideration that will distinguish it from recent classical inter- 
atomic potentials is the reproduction of all the experimental elastic constants for the 
diamond and graphite structures, allowing correct long-range relaxation behaviour 
around defects. 

The aim of this paper is to  put the concept of the potential in context and to 
describe how it is reduced to practice. Finally an application, namely that of the 
interplanar interstitial in graphite, is discussed which illustrates all the properties of 
the potential. 

t Present address: Department of Computer Science, Prince of Wales Road, University of Exeter, 
Exeter EX4 4PT, UK. 
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2. The context 

The classical-potential approach to computing the energetics of solids has the instant 
appeal of computational efficiency. Historically many potentials have started from 
the premiss that electron kinetic energy terms in the Hamiltonian decide the ionic 
and/or bond charges only at the outset of the calculation. Typical of this approach 
is the rigid-ion model with formal charges, where electronic kinetic energy causea 
one element’s highest occupied orbital to be substantially higher in energy than the 
lowest unfilled orbital of another element. Qansfer of an integral number of electrons 
from atoms of one element to those of the other element can give rise to a compound 
whose binding is dominated by electrostatic interactions. Even when the possibility 
of fitted partial charges is allowed, the common assumption is that kinetic energy 
stays constant while the electrostatic energy of some idealized charge distribution is 
minimized. Two concessions to kinetic energy exist: 

(i) in ionic models the ion cores are held to repel each other by a central force that 
is said to originate in the overlap of ion-core wavefunctions with those on neighbouring 
sites and 

(ii) in valence force models (and three body additions to ionic models) the tendency 
of an sp3 hybridized atom to prefer a tetrahedral environment is simulated by an 
expansion of the energy, frequently in bond angle and length, around the perfect 
tetrahedral energy minimum. 

In the latter case the expansions must always have limited validity away from the 
perfect environment, but they have been extremely useful in the analysis and under- 
standing of phonon and infrared spectra of semiconductors and in the examination 
of conformational properties of molecules. Similarly, ionic models continue to enjoy 
conspicuous success for the same properties of minerals. Unfortunately, the approxi- 
mations involved in ionic and valence force potentials inhibit their use in the study of 
defects, not least because of ambiguities in the definition of bonds in a defect. 

Given the fact that the problem involves an optimization of total electronic and 
nuclear energy, and that, in defects a t  least, neither electrostatic energy nor electronic 
kinetic energy dominate, i t  would appear natural to compute everything from first 
principles. This is currently impractical for many physically realistic systems, h u t  
there has been pronounced success in the application of local density functional t h o  
ory and norm-conserving pseudopotentids to small clusters and supercells (e.g. Yin 
and Cohen 1984, Sr iwtava  and Weaire 1987, Pandey 1986, Biswas el 01 1984, Heggie 
el a1 1991). For the larger systems necessary in most materials science problems, a 
more efficient method is required and a common approximation is to parametrize a 
model tightbinding Hamiltonian and use this to give structural properties, notably of 
grain boundaries (Paxton and Sutton 1989) and surfaces (Chadi 1984). The idea is to 
compute the Hamiltonian matrix in a basis of atomic-like orbitals and to diagonalize 
i t  either as a whole, directly, or locally by recursion and moments, Most often, or- 
thogonal atom-centred orbitals are assumed, but since the overlap interaction between 
neighbouring orbitals is responsible for the repulsion that resists collapse of the crystal 
(Harrison 1986), the effect ofoverlap is added later as a central interatomic force. The 
total energy is taken aa a sum over the occupied one-electron eigenmlues or, if the local 
densities of states are calculated, a sum over atoms of the integral of the first moment 
of the local density of states. Some tight-binding prescriptions keep all atoms neutral 
while others allow charge transfer. Unfortunately, taking the energy from a sum of 
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one-electron eigenvalues double-counts the ion-electron and electron-electron electr- 
static interactions, so it is implied that the term that corrects for double counting is 
included in the central-force repulsion. Thus the parametrized tight-binding method 
is firmly rooted in quantum mechanics and, since electron occupation is decided by 
linear combinations of basis orbitals, it is possible to optimize the energy, at least with 
respect to electron occupation, very efficiently. 

The desirable properties of the method, such as automatic accounting for valency 
via electron occupation and giving guidance on electronic energy levels in defects, 
are counterbalanced by several questions of consistency. First of all, the assumed 
orthogonal atomic-like orbitals would be long ranged, whereas non-zero Hamiltonian 
matrix elements are normally only assigned to nearest neighbours. Second, there is 
no justification for assuming that either the ion-ion repulsion or the double-counting 
correction should be a central force. Third, good parameters for structural properties 
do not give good hand structures and the appropriate scaling of parameters with 
distance is not universally agreed. Fourth, charge self-consistency and large basis sets 
are both known to be extremely important in ab init io total energy calculations, yet 
these are substantially denied in tight binding, where the basis is charge independent 
and minimal. These problems cast doubt on the wisdom of parametrizing at the 
electron Hamiltonian matrix element level and suggest that the complex implications 
of the electronic Hamiltonian might be better simulated by a clever function of atomic 
coordinates. 

In recent developments of classical potentials researchers have tried to simulate a 
wide range of covalent and metallic systems using functions of bond lengths and angles 
(e.g. Stillinger and Weber 1985, Tersoff l986,1988a, b) or more general t w e  and three- 
body terms (e.g. Biswas and Hamann 1985). In other words, they have tried to include 
implicitly the variation in electronic kinetic energy between structures. These have 
had a degree ofsuccess, although typically they either suffer from too limited a base for 
parametrization (StillingevWeber) or too limiting a potential form (Biswas-Hamann). 
However, Tersoff’s potential appears to have had at least as much success as many and 
the potential proposed here develops the ideas in Tersoff’s potential to achieve a more 
accurate description of a wider range of covalent structures. The TersoK potential 
has also been shown to be equivalent to the embedded atom method (Brenner 1989), 
which is very successful in metals, and the embedded atom method has  been applied 
to graphite using a Buckingham interlayer potential (Oh and Johnson 1989). 

In this work two drawbacks to the Tersoff potential will be removed: first, the 
arbitrary radial cut-off for interactions and, second, the opaque nature of the bond 
length-bond angle formula that expresses ‘competition’ between bonds. However, the 
systematic framework we shall introduce also has drawbacks-it is relatively more 
computationally intense and it is not analytical, invoking three internal degrees of 
freedom per atom (corresponding to the magnitude and direction of an unhybridized 
p orbital). 

3. The potential 

The potential starts from the premiss that the best rotationally-invariant description 
of the local environment of an atom is the Wigner-Seits or proximity cell. Different 
cells are characteristic of different structures; the single proximity cell of the diamond 
structure is illustrated in figure 1 and the two distinct cells of hexagonal graphite in 
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figure 2. Notice that in essence the diamond structure gives a tetrahedron, while the 
graphite a triangular prism. Second neighbours in the diamond structure and stacking 
relationships in the graphite structure lead to corner truncation. 

Figure 1. Proximity cell of diamond. 

Figure 2. Proximity cells of graphite. 

The philosophy behind the potential allows that the most important interactions 
are those between atoms that share proximity cell faces. Furthermore the face shared 
between two atoms must contain the intercept with their internuclear vector in order 
for the interaction to be non-negligible. Part of the physical reasoning behind the 
potential is that every point within the proximity cell of atom i is closer to i than to 
any other atom and a bond must be weak if one atom cannot ‘see’ another because 
the electron density on intervening atoms should have sufficient freedom to screen 
out their interactions. Thus, in addition to r i j ,  the vector joining atoms i and j, a 
good indicator of the strength of an interaction between two atoms i and j sharing a 
proximity cell face is the radius of the maximum inscribed circle in the face centred on 
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the internuclear intercept. The bond or face parameter, ro,j, is based on this radius 
and described in appendix A. 

In order to achieve this screening approximation smoothly and consistently, inter- 
actions are modified by a function, f, of the form below: 

a < al {: a, < a 
f(a,a, ,a,)  = $ { l - m [ * ( a - a l ) / ( a , - u ~ ) ] }  a1 < a < a ,  

where, for example, the variable a will often be a function of /rij. 
The function goes smoothly to zero with no gradient at roij = 0 when a, > O 8  and 
it saturates at unity for U > a", when the structure is close to perfect graphite or 
perfect diamond. This flatness for a > U" allows the behaviour around the graphite 
and diamond structure energy minima to be 'fine tuned' by smaller terms, such as V, 
described later. The parameters at and ay determine the position and steepness of 
the cut-off. 

The potential has been devised to interpolate between diamond and graphite struc- 
tures and does this with functions, h, that depend on a parameter 4 linearly, with 
d, = 0 corresponding to diamond and 4 = 1 corresponding to graphite. Any variable 
which has 4 as a parameter in the following equations is understood to be such a linear 
interpolation with the values at d, = 0 and 4 = 1 fitted, respectively, to diamond and 
graphite data. 

such as a = 2r 

h(4) = (1 - 4)h(O) + d,h(l) 
The first proximity cell potential for silicon (Aeggie 1989) did not invoke any internal 
degrees of freedom for atoms and was single valued. This is the best state of affairs 
for an efficient potential. Unfortunately, for graphite ie has been found necessary 
to include the magnitude and direction of the unhybridised p orbital, pi on atom i ,  
[pi[ being between 0 (sp3 hybridization, e.g. diamond) and 1 (spa hybridization, e.g. 
graphite). The pi are used to place extra constraints on bonding, beyond the purely 
geometrical ones describing the cell faces. For instance, the interaction between two 
atoms, i and j ,  connected by vector rij = rj - ri, will be either a ?r bond or a U bond 
depending on the vectors pij and p:.> representing the projection of pi onto the bond 
face and pj onto the latter direction, respectively, as below. 

p!. - pi - (p.. E,.)?.. 

p!r. - (p..P!.)̂ !. 
$3 - 1 v 'I 

- J *I pil 

There are two ways in which the pi are used to generate the d, parameters necessary 
for interpolation. The first is via the atom-centred parameter +i = f ( lp i l ,  0 , l )  for 
atom i by which the magnitude of p on each atom i is effectively constrained to 
lie between 0 and 1. This parameter controls atom-centred behaviour, such as the 
Keating bond bending parameters sK, cK and ro described later. The second is via 
the bond-centred parameter d,, for the bond ij: 
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and Aij  is a combination of the two face-elongation parameters AI,j and A2,j de- 
scribed in appendix A. The combination is dominated by the smaller of the two pa- 
rameters and since the smallest value of any A is ra the combination is as follows: 

bZLj = A, . - T o  61,i = AInj -Po,, 'I ., 

The dependence of q$j on Aij simulates the geometrical limits on a bonding ; 
when Aij  is below isf there is not enough 'space' available for a good II bond. In 
other words, the a bond cannot simultaneously be good and be orthogonal to the a 
bond in the next layer. 

The terms that depend on p i  and pj of bonded atoms i and j express the avail- 
ability of these orbitals for II bonding (the condition that either has zero magnitude 
forces +ij to be zero) and the favourability of their orientation with respect to the 
bond face and to each other. 

Both parameters 8, and 4ij are featureless in the diamond and graphite structures, 
giving values of 0 and 1, respectively, not only at the crystal structures but also in 
their vicinity. The r c m n  for this is to allow the adjustment of elastic behaviour to 
be reasonably indepcndent of the adjustment of energies of severe bonding defects 
that strongly affect the 4 and the f (2rc / r ,6 f ,0w)  terms that appear later. However, 
in order to fit the elastic constants there must. be some interlayer coupling and some 
coupling between the interlayer distance and in-plane bonding; this is achieved by a 
modificat.ion to the q5ij for the bonding term (which will be described later): 

4' = 4(1 - (A1 + A2 - c/2)s1 - ( A ,  - C / ~ ) ~ S ,  - (A2 - c/4)'s2) 

sI and sz being adjustable parameters, c being the graphite lattice constant and the 
subscript i j  omitted for clarity. Note that A, = A, = f for the three sp2 bonds in 
the graphite structure. 

The most significant parts of the pot.ential comprise a Morse-like radial potential, 
as in the Tersoff potential (Tersoff 1986, 1988 a,b), but the radial cut-off is replaced 
with the many-body function f(2r,,/r,ef,8,) and the parameters of the two exponen- 
tial terms are controlled by $ i j .  In total there are six parts to the potential of which 
V, and V, are t.he repulsive and attractive parts of the Morse-like potential, IT and 
V: are the repulsive and attractive parts of an interlayer or stacking potential for 
graphite, V, is a Keating-like bond-bending potential and V, is an additive constant 
to give the reference energy. 

The formation energy, E, of a cluster is then given by E =EL$. 
The first two terms above are summed over all faces, ij, on the proximity cell, 

while V,, V: and \', represent sums over the three or four best faces for bonding, 
since in the tight binding approximation only up to four independent pair bonds can 
be formed around an sp3 atom. 

For each face the repulsive term ( t$ ) i j  is given by: 

(KLj = fa(+i,)D - f ( r i j , r f t  r u ) I f ( 2 ~ v , j / ~ i j ,  ed4ij), s ,(~i ,))ex~[-al(4ij)r~jI 
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with n, a,, 8,,8, for C$ = 0 , l  being adjustable constants. The role of the smooth radial 
cut-off is to allow the V, potential to give way gradually to the r potential, which is 
adjusted for good long-range behaviour; it has very little effect because the exponent 
a, is large, making V, small at r = r,. 

takes over gradually for rij > r, between atoms 
that have non-zero p components. Thus its main effect is seen in graphite, where it is 
largest for faxes whose normals coincide with the p vectors on the interacting atoms 
i and j .  These atoms are those stacked one above the other in the e direction. 

The stacking repulsive term 

where 

111 

P i j  =& - IP:jI2)(1 - IP:;I*) 

The constants s3,& yI,q; ,q, , iu are adjustable and the first term in the square 
brackets dictates the perfect graphite stacking behaviour (makes graphite a local min- 
imum with the correct elastic behaviour), while the second term ensures that graphite 
is a global minimum, i.e. no other stacking is lower in energy. Experimentally it is 
known that rhombohedral graphite (stacking ABC) is very close in energy to hexagw 
nal graphite (only 0.18 meV per atom higher (Kelly 1981)) but in our approximation 
it is practically degenerate. This form of potential is similas in spirit to the recently in- 
troduced electrostatic interaction of Hunter and Sanders(l990), in the sense of having 
been framed with repulsive p-orbital interactions in mind. 

The bonding term and the Keating term relate to the covalent bonds around each 
atom. The tight-binding approximation allows up to four bonds for sp3 hybridization 
and three bonds for sp2 hybridization. This potential concerns itself with interpolating 
betwen the two. 

Ignoring the role of the unhybridized p orbital, the bond strength of a face repre- 
senting the bond i j  would be: 

di j  = $ b ( k j )  e x ~ [ - a , ( ~ ~ ~ ) r , ~ I f ( 2 r , , , / ~ ~ , , e ; ( ~ ~ ~ ) ,  

where b(4ij) and are functions like h(4)  adjustable at q+ij = 0 and q4ij=l. In 
the case of pure sp3 bonding the covalent energy is the sum of the d j j  for the four 
faces with maximum d i j ,  When & is greater than zero, i.e. less than sp3, there is the 
possibility of one weak bond of strength dii using the unhybridized p orbital and three 
basically sp2 bonds of strength d;. The latter bonds are weakened by the withdrawal 
of some p character. 

d ~ . = d j j ( l - # j t ’ 2 )  dii =d;j[l-q+(I-i ‘2 )I 
V 

where 

t’ = 1 - f(pi-ijj,0.05,0.95) 
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Three faces/bonds A, B and C of strength dj and one face, D, of strength 4 are 
chosen to maximise the covalent energy, so 

The attractive interlayer potential V: acts effectively between r systems in different 
layers, and for a given bond between atoms i and j, it is given by: 

where c/2 is the graphite interlayer separation of 3.35 A and s4 is a free parameter. For 
simplicity the interaction is assumed to be linear in interlayer separation for moderate 
displacements. The term behaves well for moderate and large compressions, but is 
not suitable in this form for large expansions and surfaces. The attractive stacking 
potential is only effective for those interactions considered to be T bonding, i.e. A ,  B 
and C, SO V: = (V:)iA + (V&B + (V&. 

The term in bond angles, VK, is of the same form as the angular part of the Keating 
potential (Keating 1966) but modified to take into account bond strengths, d; and to 
cancel the contribution the original potential would make to the bulk modulus, which 
has already been fitted by the radial Morse potential. The advantage of keeping the 
Keating form is that it can be used alone for atoms far from a defect when dealing 
with defects in the diamond structure. This term only has a pronounced effect near 
perfect configurations, because the bond strength term di; is modified to d$ to reduce 
quickly to zero for faces that are well distorted. 

where cK is a linear interpolation between the diamond and graphite values of -5 and 
-$, respectively, for the cosine of the equilibrium angle between bonds on the same 
atom in those structures. 

The potential has not yet been extended to the sp hybridization case, due to lack 
of information about elemental structures involving triple bonds. It is easy to identify 
structures where sp hybridization might occur since only two, almost parallel, faces 
will have significant values of r, and di;. The best approximation we can make is to 
allow that an sp U bond cannot be worse than an sp2 U bond, so V,, which would 
otherwise contribute strongly for angles around 180", is ignored on atoms for which 
only two or fewer bonds have dyj > 0.6 eV. Although this gives rise to a discontinuity 
in the potential, it has not affected any of the structure optimizations so far. 



Semiclassical inienrtomic potential for gmphite 

Table 1. Carbon parameters. 

3073 

a (eV) b(eV) 01 (A-') 02 (A-') et 8" 0; e l  
6 = 0  2948.875 78.958 4.7123 1.7CfJ6 0.0 1.4 -0.5 1.4 
6 =  1 2754.5 12s.206 4.7123 1.9196 0.0 1.7 -1.0 1.7 

6 = 0 -7.349665 1.54049 0.0296875 -4 0.7 1.3 
.$= 1 -7.3740586 1.42028 0.0311875 -; 1.2 1.7 

-0.0271 0.0293 0.13 0.01 0.07 0.8 1.6 

0.002633 0.05w3 0.001 0.008 2.2 2.4 

* Yin and Cohen 1984 

4. Potential f i t t ing 

The free parameters used in the potential are given in table 1, where the reference 
energies are those given by the potential for diamond and graphite, being negligibly 
different to  the cohesive energies quoted by Yin and Cohen (1984). 

Because the potential is in some ways under-determined a least squares fitting was 
not undertaken, however the experimental elastic constants of table 2 were reproduced 
to within 10 % (or 3 GPa). The constants were obtained by numerical differentiation, 
taking account of inner elasticity using the formalism of Cousins (1982) for diamond 
and of an extended version for hexagonal crystals for graphite (Cousins, private com- 
munication). The internal degrees of freedom (pi) were frozen for the elastic constant 
calculation. Recently, theory and experiment have suggested that some of the graphite 
values may be inaccurate (Jansen and Freeman 1987, Zhao and Spain 1989) and there 
is nothing in the potential framework that would prevent subsequent refitting of any 
new accepted set of elastic constants. 

Table 2. EIaFtic cowtants (GPa). 

Diamond Graphite 

c11 Cl2 C44 F c11 CIZ CIk cl3 e33 

This WO& 1075.1 125.4 574.1 0.21 1062.7 178.7 3.6 14.6 34.8 
Experiment 1076l 125l 576' 0.125l 1W02 18d 4.02 15.0' 36.5' 

McSkiimin and Bond 1957, Cousins 1982, Cousins et all969 
'Nichdson and Bacon 1977 

Defects pose a more difficult problem, and the approach used was to choose 0; and 
8:, relax a chosen set of defects given in table 3, compare the model energies against 
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ab in i t io energies, re-adjust 6; and 6: and repeat the cycle until reasonable formation 
energies were obtained. Given the inaccuracies expected of ab in i t io calculations an 
exact fit was not demanded and table 3 reveals the results obtained relaxing 50 atoms 
around each defect. Graphite defect results were obtained with IpI = 1 and diamond 
results with IpI = 0. Squarite is a hypothetical planar carbon structure with a square 
2D unit cell where every carbon atom has four in-plane neighbours. Several of the ab 
in i t io results, which only allowed radial relaxation around defects, should be higher 
in energy than those for this work where full relaxation was allowed. Thus vacancy 
energies and the graphite in-plane interstitial energies are more in accord with the ab 
inifio results than the table indicates. Clearly, concerted exchange in diamond is the 
worst case. 

Table 3. Defect energis (eV) 

Diamond 

Vacancy Bondcentrd 001 split Tetrahedral Concerted 
intmtitial interstitial interstitial exchange 

Thisrork 6.4 18.8 16.3 28.1 19.2 
ab initio 7.2l 15.8' 16.7' 23.6' 13.2' 

Graphite 

VsUuKy In-&m Concerted Squarite 
interstitial exchange (per atom) 

This work 6.7 16.2 9.2 3.21 
Sb inilio 7.6' 19.5' 10.4' 3.33 

' Bcrnhdc e l  a/ 1988 
Kaxiras and Pandey 1988 ~~ 

Weinert e i  of 1982 

Finally, the region of intermediate (pi was explored by fitting the idealized diamond 
to graphite transition (diamond to rhombohedral graphite) as calculated by ab initio 
total energy methods (Fahy e t  a1 1986, 1987). Table 4 shows the internal energies per 
atom for the transition, constraining the same parameter, R (the interlayer separation) 
as in the ab init io work, and relaxing B (the in-plane bond length) and 6 (the buckling 
angle). The column on the right gives the magnitude of the unhybridised p orbital in 
the model, which moves prognxsively from 0 to 1 through the transition. 

Table 4. Diamond to maphitc transition. 

1.54 
1.80 
2.00 
2.20 
2.45 
2.60 
2.90 
3.35 

1.540 
1.510 
1.475 
1.438 
1.424 
1.422 
1.420 
1.420 

1.541 
1.520 
1.489 
1.468 
1.450 
1.441 
1.428 
1.420 

109.5 
106.4 
1029 
98.5 
94.6 
92.8 
90.5 
90.0 

109.5 0.W 
107.9 0.20 
105.2 0.33 
102.7 0.31 
100.4 0.17 
99.0 0.10 
96.5 0.03 
89.9 0.01 

0.024 0.00 
0.235 0.32 
0.351 0.48 
0.296 0.62 
0.210 0.75 
0.127 0.87 
0.017 1.00 
0 . m  1 .a3 
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The columns with the subscript M refer to this work, F to the work of Fahy et a1 
(extracted from the graphs in their paper) and energies are referred to hexagonal AB 
graphite. It should be noted that  rhombohedral graphite and diamond are practically 
degenerate in the ab initio calculations, while there is a 24 meV/atom difference in 
cohesive energy that is correctly given by the proximity cell potential. Given this 
24 meV difference, the agreement between this potential and the ab initio calculations 
is very good. 

The relaxations were performed using numerical differentiation to obtain the forces 
and diagonal second-derivatives of energy for each atom. For each Cartesian direction 
this required three energy evaluations for the atom and its environment of about 30 
atoms, but a realistic approximation was to maintain the topology (i.e. the vertex and 
edge relationships) of the proximity cells and only recalculate the bonding parameters. 
Given the anisotropy in the graphite structure a crude variable metric approach was 
used to structural optimization, searching for a minimum of energy along the vector 
U, where: 

for Cartesian coordinate a and atom i, using Brent's method (Press et af 1986). 
In summary, the proximity-cell potential gives a reasonable account of defect and 

elastic properties in diamond and graphite and it should yield valuable information 
about structures that are between the two. 

5. The single interstitial in graphite 

A proper treatment of the single self-interstitial in graphite has long been a challenge, 
because its investigation requires long-range lattice relaxation (because of the flexible 
nature of the sp2 bonded sheets) and good account of both sp2 and sp3 hybridizations. 
Early attempts have allowed: 

(i) rigid layers, small molecules and CNDO calculations (Abrahamson and Maclagan 
1984) giving a migration energy of 10 eV! 

(ii) flexible layers, but no interstitial-layer binding in a classical potential (Taji et al 
1986) giving a formation energy of 1.28 eV or with weak binding (Enriquez et al 
1975) giving 2.5 eV! 

(iii) small supercell (18 atoms) of rhombohedral graphite with ub initio total energy 
estimation on in-plane defects allowing only in-plane movements (Kaxiras and 
Pandey 1988) giving a formation energy of 19.5 eV! 

Experiment gives an interlayer interstitial formation energy in the region of 7 eV 
and a migration energy below 1 eV (Thrower and Mayer 1978). The proximity-cell 
potential gives formation energies between 6.8 eV and 8 eV, depending on environment, 
with a structure close to that proposed by Wallace (1966) having the lowest energy 
(figure 3). In this structure the interstitial occupies asite between two atoms that are 
stacked one above the other in the c direction. There is a long bond (1.62 A) from the 
interstitial to each of these atoms, which have a IpI value of 0.33 and are forced into 
a near tetrahedral configuration. It is the combination of long bonds and tetrahedral 
neighbours that forces the layers apart, allowing the single self-interstitial to cause c 
axis expansion. This is in contradiction to the common assertion that only clusters of 
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Figure 3. Lowest energy self-interstitial in graphite. 

two or more interstitial atoms can cause expansion, because two single C-C bonds of 
1.54 8, could not span the 3.35 8, interlayer spacing. 

The next-lowest energy position is directly above an atom in one layer and below a 
hexagonal ring in the next layer. The energy difference between this position and the 
lowest energy one is between 0.3 eV and 1.3 eV depending on cluster size or unit-cell 
size. Thrower and Mayer (1978) and Abrahamson and Maclagan (1984) argued that 
this structure would be the lowest in energy because the interstitial could form four 
nearly diamond-like bonds with the atom below and three atoms in the hexagonal ring 
above. The proximhy-cell potential makes the three latter bonds unfavourable and 
prefers to leave atoms in the hexagonal ring perfectly sp2 hybridized, maintaining the 
in-plane sp2 U- and m-bonds and keeping them orthogonal to the interstitial atomic 
orbitals. 

Two approaches were used in simulating the self-interstitial: supercell and cluster. 
The supercell was 3x3 unit cells in the basal plane by 2 unit cells in the c direction, 
giving 72 atoms, with an interstitial atom placed between the middle two layers. All 
atomic degrees of freedom were relaxed and a formation energy of 6.8 eV was obtained 
with an expansion of 1.6 atomic volumes in the supercell. The next minimumenergy 
structure corresponded to a formation energy of 7.1 eV and an expansion of 5.2 atomic 
volumes. Experimental estimates for the volume of formation vary from 0.9 to 4 atomic 
volumes (Simmons 1965, Henson and Reynolds 1965) while the modelling of Enriqnez 
el al (1975) with very little interlayer binding, gave 6-10 atomic volumes. 

The cluster used contained 1945 atoms, with the inner 180 atoms in a near spherical 
region around the interstitial being relaxed. The lowest formation energy was 6.9 eV 
and the next lowest 8.2 eV; the greater difference here, compared with the supercell, 
probably arises from the large formation volume differences and the constant-volume 
boundary conditions. The superlattice of interstitials is thus a marginally stable ar- 
rangement and may he long-lived, possibly giving support to the suggestion by Lacht.er 
and Bragg (1986) that it is varying densities of interstitials that give rise to step-like 
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variations in the value of IcI in graphites of different degrees of perfection. Other, 
possibly more stable, superlattices are being investigated. 

6. Conclusions 

The prospect of a reasonable interatomic potential for carbon has come into view 
with the proximity-cell potential presented here. The potential behaves well for most 
defects examined and gives useful information about the self-interstitial in graphite by 
combining good elastic properties with good defect properties. The self-interstitial in 
graphite isshown to have a ground state structure equivalent to the bonded interstitial 
first proposed by Wallace (1966) and it has a large formation volume (greater than 
one atomic volume). 

It should be noted that a recent development in the Tersoff potential has been its 
adaptation to hydrocarbons, including a delocalization energy in a crude way (Brenner 
1990). It is anticipated that similar modifications can be applied to the proximity-cell 
potential in the near future and that sp hybridization can also be included. 
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Appendiw A 

This appendix describes how the geometrical parameters are obtained for each face, 
ij, representing a bond from atom i to atom j ,  in the proximity cell around atom a'. 
The parameters are labelled rOJ,  AI,, and A2,,, but in the following the subscript ij 
labelling the face will be dropped for clarity. 

The parameter ro is based on the maximum inscribed circle, centred on the inter- 
nuclear intercept, whose radius would be defined as 6 ,  = min(bk), where b, are the 
perpendicular distances of the edges, k, of length ak to the internuclear intercept, o 
(figure Al). 

When several 6, are close to b,, the behaviour of the potential could become 
chaotic if r,, = b,,, were used, so a weighted combination of bk's is used as below: 

2 with a = and E = 10h6A . The term €/a: with a low value of 6 suppresses 
contributions from very short edges and the high value of a allows only those edges 
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Figure A l .  Face parameters for v c .  

Figure A2. Face parameters for AI and Az. 

with b, very close to b, to be significant. The weighted combination represents a 
softening of the original idea that ro could be taken to be b,, a situation that is 
recovered if 01 is made infinite. 

The face elongation is probed with circles of variable radius 4 tangent to the 
edges$ (figure A2). Letting PI be the angle between the edge, k ,  and the projection 
of pi onto the face, then: 

r; = ?jr,[3 - 2max(cosp,, $11. 
The measure of elongation for the edge k is 6, and is defined in. the following way: 
with the centre of the tangent circle on the line that is the projection of p i  onto the 
face, 4 is the distance from the centre of the circle to the internuclear intercept. The 
two elongation parameters for the face are then defined as 

A2 = re + min(6,). AI = r, +max(6,) 

This procedure gives three well-defined and well-behaved geometrical parameters Po, 
A, and A2 for each face. 
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